Detecting Transient Surface Features via Dynamic Landmarking

Kiri L. Wagstaff (JPL, California Institute of Technology)
Adnan Ansar (JPL), Melissa Bunte (ASU),
Ron Greeley (ASU), and Norbert Schorghofer (Univ. of HI)

Image credit: HiRISE, 2/19/2008
Outline

• Goal: Detect transient surface features
 • Pixel-Based Change Detection
 • Landmark-Based Change Detection
• Features: dark slope streaks, dust devil tracks on Mars
• Current Results
• Next Steps
Transient Surface Features

June 12, 2000

April 12, 2002

Image credit: MOC
Transient Surface Features

New dark slope streaks

Image credit: MOC

June 12, 2000

April 12, 2002
Pixel-Based Change Detection

- Register two images
- Derive mapping from SIFT features
- Detect pixel changes
- Create difference image
- Threshold on difference image
Pixel-Based Change Detection

Image 1

Image 2

Image credit: MOC

Adnan Ansar
Pixel-Based Change Detection

Image 1

Image 2

Image credit: MOC

Adnan Ansar
Pixel-Based Change Detection

Image 1

Image 2

Difference image

Image credit: MOC

Adnan Ansar
Pixel-Based Change Detection

Image 1 - Image 2 = Difference image

Image credit: MOC
Adnan Ansar
Registration Improvements

- Global match
- Local refinement
- Quadratic refinement

False color indicates magnitude of change

Automatic labeling of changed pixels using dynamic threshold

Image credit: MOC
Registration Improvements

Global match

Local refinement

False color indicates magnitude of change

Automatic labeling of changed pixels using dynamic threshold

Image credit: MOC

Adnan Ansar
Registration Improvements

Global match Local refinement Quadratic refinement

False color indicates magnitude of change

Automatic labeling of changed pixels using dynamic threshold

Image credit: MOC
Landmark-Based Change Detection

VS. =
Landmark-Based Change Detection

vs.

=
Landmark-Based Change Detection

VS.

=
Landmark-Based Change Detection

vs.

vs.

=
Landmark-Based Change Detection

VS. VS. =
Landmark-Based Change Detection
Intensity Histograms

HiRISE PSP_003570_1915

w_1

w_2
Salient Landmark Selection

- How much does a window stand out from its neighbors?
 \[D_{KL}(w_1 || w_2) = \sum_i w_1(i) \log \frac{w_1(i)}{w_2(i)} \]

- Sort windows by their average KL-divergence salience (across all neighbors)

- **Evaluation:**
 - One-to-one matching of detected landmarks and manual annotations for each feature
 - Thank you to science collaborators!

Early version presented at 2007 Fall American Geophysical Union Meeting
Dark Slope Streaks
Detections given salience threshold

Original

HiRISE PSP_003570_1915
Dark Slope Streaks

Detections given salience threshold

Original

>= 1.89

Match

Manual

HiRISE PSP_003570_1915
Dark Slope Streaks

Detections given salience threshold

Original

>= 1.89

Match

>= 1.45

No match

HiRISE PSP_003570_1915
Dust Devil Tracks

Detections given salience threshold

>= 1.96
>= 0.81
>= 0.28

Dust devil track annotations by Melissa Bunte (ASU)
ROC Curves

- Dark slope streaks easier to detect reliably
- Window size affects results
- Improve on one-to-one mapping?
Landmark Salience

as a function of window size

- Dark slope streaks more salient than dust devil tracks
Next Steps

- **Change Detection**
 - Use mutual information to mark changes
 - Apply landmark detection to difference image

- **Landmark Detection**
 - Improve efficiency, extend to rectangles
 - Integral Histogram computation [Porikli, 2005]

- **Landmark Type Classifier**
 - Ridge, crater, streak, track, gully, etc.
 - Summer student: Julian Panetta (Caltech)

Thank you! Any questions?

Email: kiri.wagstaff@jpl.nasa.gov